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Abstract Decoding and classification of objects through

task-oriented electroencephalographic (EEG) signals are

the most crucial goals of recent researches conducted

mainly for brain–computer interface applications. In this

study we aimed to classify single-trial 12 categories of

recorded EEG signals. Ten subjects participated in this

study. The task was to select target images among 12 basic

object categories including animals, flowers, fruits, trans-

portation devices, body organs, clothing, food, stationery,

buildings, electronic devices, dolls and jewelry. In order to

decode object categories, we have considered several units

namely artifact removing, feature extraction, feature

selection, and classification. Data were divided into train-

ing, validation, and test sets following the artifact removal

process. Features were extracted using three different

wavelets namely Daubechies4, Haar, and Symlet2. Fea-

tures were selected among training data and were reduced

afterward via scalar feature selection using three criteria

including T test, entropy, and Bhattacharyya distance.

Selected features were classified by the one-against-one

support vector machine (SVM) multi-class classifier. The

parameters of SVM were optimized based on training and

validation sets. The classification performance (measured

by means of accuracy) was obtained approximately 80 %

for animal and stationery categories. Moreover, Symlet2

and T test were selected as better wavelet and selection

criteria, respectively.

Keywords BCI � EEG signals � Object recognition � SVM

classification � Wavelet

Introduction

The human brain is a complex system in which neural

activity generates rich encoded information. The neural

information can be used to investigate encoding in the

brain and decoding the stimuli from brain signals. One of

the important cognitive tasks in the brain is object recog-

nition. The procedure of visual object perception is yet to

be well-discovered; however, a number of studies have

made substantial progress (Johnson and Olshausen 2003;

Martinovic et al. 2011). To allow studying object recog-

nition, several non-invasive recording techniques of neural

responses have been allocated. Among the noninvasive

techniques, brain activity can be inferred from electroen-

cephalograms (EEG). The EEG is a well-documented

technique which is capable of characterizing certain brain

states, especially processing of different semantic catego-

ries (Hoenig et al. 2008; Pulvermuller et al. 1999; Kiefer

2001; Paz-Caballero et al. 2006; Proverbio et al. 2007;

Fuggetta et al. 2009; Adorni and Proverbio 2009).

EEG signals are mainly analyzed by their frequency

contents. That is, the interpretation of the EEG signal is
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based on the power of its constituting frequencies. Five

main frequency ranges are normally included in all EEG

studies: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),

beta (13–30 Hz), and gamma (from 30 Hz). The develop-

ment of EEG-based interpreting approaches is an interest-

ing application which makes real-time decoding systems

possible (Muller et al. 2008). In order to decode the mental

tasks, three main aspects can be considered to analyze EEG

signals namely feature extraction (Sykacek et al. 2003;

Ince et al. 2005), feature selection (Pregenzer and

Pfurtscheller 1999; Lal et al. 2004), and classification

approaches (Palaniappan et al. 2002; Peters et al. 2001).

The feature extraction stage involves transformation of

raw signals into relevant data structures by deleting noise

and highlighting important data. The products of this pro-

cess are called feature vectors. In addition, it could imply

‘‘dimensionality reduction’’, which eliminates redundant

data from the feature vectors with the aim of facilitating the

classification process. Moreover, extracted features should

be unique to each data class and be different of the other

class (Coyle et al. 2005, Coyle et al. 2006a, b; Wolpaw

et al. 2002). One of the approaches of feature extraction is

fourier transform (FT). The Fourier transform converts a

signal in the time domain to a signal in the frequency

domain, and it is widely used in the form of the fast fourier

transform (FFT) algorithm. Fourier analysis is simply not

effective when used upon non-stationary signals, because it

does not provide frequency content information localized

in time. The short time fourier transform (STFT) was

developed for analyzing a small section of the signal at a

time called ‘‘windowing’’. The problem with STFT is the

resolution. With a smaller window size, the faster changing

components are better detected, while slowly changing

details are not picked up well. Lower frequencies can be

detected with larger windows, but localization in time will

not be suitable in this case (Messer et al. 2001). To solve

the drawbacks of power spectrum methods such as FFT and

STFT, wavelet transform (WT) has been proposed to per-

form time-scale analysis of signals. The major advantage of

WT over spectral analysis methods is that it is appropriate

for analysis of non-stationary signals; therefore, it is proper

to localize transient events. According to the non-stationary

nature of biological signals, wavelet’s feature extraction

and representation methods can be used to analyze them.

Wavelets are powerful candidates for decomposition and

feature extraction of EEG signals for many applications

due to their multi resolution temporal and spectral locality

(Sherwood and Derakhshani 2009).

Messer et al. (2001) studied a set of wavelet families and

level of decompositions that acted best in removing noise

in phonocardiogram (PCG). They used discrete wavelet

transform (DWT) to calculate the wavelet’s coefficient at

discrete intervals of time and scale instead of continuous

wavelet transform (CWT), which reveals more details

about the signal, but with much more computation time.

Many factors that must be considered when attempting to

de-noise psychological signals when using wavelets. One

of them is orthogonality. Being computationally inexpen-

sive, orthogonal wavelets allow a transform to be computed

containing the same number of points as the original signal.

Wavelets having properties of orthogonality include Haar,

Daubechies, Coiflets, and Symlets. An increasing level of

wavelet requires increasing complexity and more compu-

tation time. In most cases, using 5 levels of decompositions

proved adequate.

Due to properties of bio-signal types, allocating proper

mother wavelet is essential for obtaining better perfor-

mance. Rafiee et al. (2011) examined more than 300

wavelets on three categories of biological signals [elec-

tromyogram (EMG), vaginal pulse amplitude (VPA), and

EEG signals]. They recorded EEG from three mono-polar

electrodes during visual stimulus presentation. They found

that daubechies44 (Db44) is the most similar function to

biomedical signals. Unlike previous researches, Rafiee

proved that asymmetric wavelets such as Db44 can have

better results than symmetric wavelets. They also proved

that similarity between signals is not always suitable for

signal processing based on wavelet transform. In another

study Daubechies6, Daubechies1, Daubechies2, Symlet6,

Symlet10, Coiflets4, and Coiflets2 wavelets with learning

vector quantization–wavelet transformer (LVQ–WT) and

multilayer perceptron–wavelet packet (MLP–WT) classi-

fication methods were used by Keshtiban et al. (2011). Best

results were obtained from Daubechies and Symlets

wavelets.

Krishnan Mookiah et al. (2012) in their study extracted

features for identification of normal and glaucoma classes

using higher order spectra (HOS) and DWT. Then,

extracted features were fed to the SVM classifier with

linear, polynomial order 1, 2, 3 and radial basis function

(RBF). SVM classifier with kernel function of polynomial

order 2 achieved an accuracy of 95 % sensitivity and

specificity of 93.33 and 96.67 % respectively to identify

the glaucoma and normal images.

Gu et al. (2009) performed offline single-trial EEG

classification to identify the speed of an imagined wrist

extensions movement at two speeds (fast and slow) from

EEG recordings in amyotrophic lateral sclerosis (ALS)

patients. They implemented DWT and SVM, and proved

that speed of the task was encoded in the time delay of

peak negativity, which was shorter for faster movements.

In another similar study, Demiralp et al. (1999) employed a

response-based classification procedure to choose the trials

containing the P300 component from the whole set of

sweeps of an auditory oddball paradigm. For this purpose,

the most significant response property reflecting the P300
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wave was identified by using the WT. The average of

selected single sweeps from the whole set of data according

to this criterion yielded more enhanced P300 waves com-

pared with the average of the target responses.

Category recognition is a challenging problem and tech-

niques based on computer vision often require human

involvement to learn good object category models. Since the

computer should learn how to recognize a given EEG pat-

tern, correspondence among EEG patterns and computer

actions involves a machine-learning problem. A computer

algorithm is in charge of extracting the associated EEG

patterns. After the training phase is finished, the subject

should be able to control the computer actions with his/her

thoughts. This is the major goal for a BCI system. Corre-

sponding to this aim, (Philiastides and Sajda 2005) demon-

strated neural measurements of perceptual decision making

via single-trial EEG analysis in a face versus car categori-

zation task. They identified two major separating compo-

nents. These findings demonstrate a temporal distribution of

component activity showing an evidence gathering process,

which begins after early visual perception. Misaki et al.

(2010) attempted to decode the category of visual objects

information in 3-Tesla functional magnetic resonance

imaging (3T-fMRI) response patterns measured for

approximately 60 min per subject with six multivariate

classifiers. They proved Fisher’s linear discriminant and the

linear support vector machine performed best and suggested

that linear decoders may execute most successfully in the

mentioned scenario of visual object representations. In

comparison, in another study, Garrett et al. (2003) compared

the result of a linear classifier (Linear Discriminant Analysis)

and two non-linear classifiers (NN and SVM) applied to the

classification of spontaneous EEG during five mental tasks.

The results indicated that nonlinear classifiers produce better

classification performance, in which the performance of non-

linear SVM was 72 %, while linear discriminant analysis

performance was near 66 %.

Tzovara et al. (2012) exhibited neuro-imaging experi-

mental conditions using single-trial EEG responses to

decode stimulus-related signals in two event related

potential (ERP) studies. They used statistical distribution

method with a gaussian mixture model (GMM). Cross-

validation algorithm was tested in two independent EEG

datasets to classify left versus right hemi-field checker-

board stimuli for upper and lower visual hemi-fields, and in

an initial versus repeated presentations of visual objects.

Martinovic et al. (2008) in their object recognition study

proved that object’s features coded very rapidly and play

different functional roles while color, extra contours and

edges delay it.

In the current study, features were extracted using DWT

with three mother wavelets, Haar, Symlet2, and Daube-

chies4 to perform the EEG single-trial pattern

classification. Scalar feature selection approaches were

applied to reduce the feature set dimensionality through

selecting a subset of features. Feature ranking with three

different criteria (T test, Entropy, and Bhattacharyya dis-

tance) were performed (Chang et al. 2010). It is essential to

reduce computational cost and improve classification per-

formance, especially when dealing with finite sample sizes.

Finally, the selected features related to EEG patterns were

classified using SVM with RBF kernel, sequential minimal

optimization (SMO) solver and one-against-one model.

Methods

All subjects were informed of the task prior to experiment.

They were gifted for their participation and signed written

consent forms in accord with the declaration of Helsinki

principles. The study was approved by the National Com-

mittee of Ethics in Medical Research (Technology and

Research Deputy of Ministry of Health and Medical

Education).

Participants

A total of ten adult volunteers (8 male and 2 female, age

range 18–28; mean age: 23 ± 3.4 SD), participated in the

study. All participants were right-handed except one, and

reported that they did not suffer from any psychological or

neurological disorder, and had normal vision.

Stimuli

Same-sized (600 9 800 pixels) color images of 12 cate-

gories were taken from the internet and included images of

animals, flowers, fruit, transportation devices, body organs,

clothing, food, stationery, buildings, electronic devices,

dolls, and jewelry. The experiment was displayed in two

parts. Six categories were presented in partition-1 and the

next six categories in partition-2, which can help to reduce

participant’s eye boredom and EEG eye-blinking artifacts.

Each category had five different items. Each subject

observed 360 images during the whole experiment. Sub-

jects were allowed to have 3 min rest between two parts.

Categories were not randomly assigned to partition-1 and

partition-2 and have had fixed order for all subjects.

Moreover, each trial (given category) consisted of 30

images, 15 of which were related to the given category and

the remaining 15 images were from others, which were

non-targets. Non-target images were randomly selected

among other categories and were shown within the stream

of targets. The trials were presented only once per partic-

ipant with no information about their order. Figure 1 shows

task paradigm, and orders of pictures are shown in Fig. 2.
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Experimental Design

The defined experiment in this study is ‘‘cued-target’’ with

‘‘go/no-go’’ task. In the ‘‘go/no-go’’ task, subjects press the

button if the image contains a target and do nothing if the

image is not a target. In the cued-target, a word (target cue)

was presented on the screen before each category,

informing the subjects to target category. Target cue

remained on the screen for duration of 1 s, and after an

additional 900 ms delay, the images are presented. Each

image is presented 700 ms throughout 800 ms interval time

between two images. A black screen is displayed for 5 s

between two categories as a rest time. Subjects were asked

to click the left button of the mouse with their right hand

index finger to make responses as quickly as possible.

Moreover, they were asked to delay their blinks in 800 ms

interval time. All images were centrally presented on a

LCD monitor with a viewing distance of 75 cm. Image

presentations were controlled by a PC running Psytask–

WinEEG presentation software. PSYTASK is software for

audio/visual stimuli presentation, which works with Wi-

nEEG, providing a synchronous stimuli presentation to

EEG recording. The particular time delays between image

presentations were chosen by PSYTASK.

EEG Recording

Participants were fitted with a 19-channel electrode cap and

prepared for EEG recording according to standard tech-

niques. Recorded channels (FP1, FP2, F3, F4, C3, C4, P3,

P4, F7, F8, T3, T4, T5, T6, FZ, CZ, PZ, O1, and O2) were

selected among the international 10–20 set of electrode

positions with linked-ears montage (Miller et al. 1991).

(The MCN system (modified combinatorial nomenclature)

renames four points of the 10–20 system T3, T4, T5, and

T6 as T7, T8, P7, and P8, respectively.) Subjects performed

the experiment in a darkened, sound-dampened, electri-

cally shielded booth. EEG signals were amplified with

MITSAR hardware, and then sent through an analog-to-

digital converter. Signals were recorded at 500 Hz sam-

pling frequency on a PC running Digitize.

Preprocessing

Brain signals should be preprocessed to achieve better

analysis performance. Due to the most useful frequencies

of brain bands, brain signals were filtered between 1 and

30 Hz frequencies (Simanova et al. 2010). A 1–30 Hz

phase-shift free butterworth band-pass filter (12 dB/

Octave) was used. Moreover two amplitude thresholds

were designed for fast and slow waves in which voltages

higher than 50 lV for slow waves and 30 lV for fast waves

were rejected using MATLAB/signal-processing-toolbox

[threshold values were chosen based on Alpha and Beta

brain waves normal amplitudes (Sanei et al. 2007)].

In order to correct detailed artifacts, the ICA method of

WinEEG was implemented. The ‘‘Infomax’’ algorithm was

implemented in WinEEG software to analyze raw EEG sig-

nals (Delorme et al. 2007). Eye blink artifacts and some

others can be corrected using ICA method even if the EOG

signal was not recorded. This method is based on blind source

separation procedure between multi-channel EEG data and

spatial filtering of some components of the EEG signal. Input

data is manually selected during time interval including

Fig. 1 ‘‘Cued-target’’ with ‘‘go/

no-go’’ task paradigm. Target

cue remained on the screen for

1 s, after an additional 900 ms

delay, the images were

presented. Each image was

presented for 700 with 800 ms

interval time between two

images and 5 s black screen for

rest between two different

categories
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artifacts. After decomposition of the multi-channel signal,

components of the signal related to artifacts were selected

manually during the analysis of their topographies and

waveforms of components. In general, the main components

were horizontal and vertical eye movements and temporal

muscular activities, so these noisy components were selected

and ICA algorithm was applied to the whole EEG data.

The components corresponding to artifacts were removed

and a spatial filter performing equivalent transformation was

calculated and applied to raw EEG (Jung et al. 2000). Each

trial (given category) had fifteen target images; however, this

number is not equal for all categories and all subjects for the

reason of removing and cancelling wrong and noisy respon-

ses. In order to have the same number of images for all cate-

gories, thirteen target responses were chosen, which results

equal training probability. Continuous EEG signals were

divided into segments. The time interval of 40 ms from the

picture onset was removed, and the remaining 660 ms were

used for analyzing each image. The 0–40 ms time bands were

rejected from the analysis, because it takes approximately

40–50 ms for information to reach the primary visual cortex

(Phillips et al. 2012). This 660 ms signal converted to 330

samples due to 500 Hz sampling rate. Considering the 19 EEG

channels, the dimension of one single trial equals 19 9 330.

Data from 8 subjects were preprocessed and used for

classification because the 4th and 5th participant data were

full of uncorrectable artifact. Therefore, they were rejected

for further analysis.

EEG Feature Extraction

Wavelet transform is a spectral assessment procedure in

which any function can be declared as an infinite series of

base wavelets. Wavelets are mathematical functions that

Fig. 2 The images of study.

Twelve categories 600 9 800

pixels color images including

images of animal, flower, fruit,

transportation device, body

organ, clothing, food,

stationery, building, electronic

device, doll and jewel
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decompose data into different frequency components by

shifting and scaling, which lead to a set of signal coeffi-

cients. The signal can be reconstructed by these coeffi-

cients. The main feature of WT is time–frequency

localization. In EEG signals, the wavelet method will

exhibit features related to the temporary character of the

signal, which obviously cannot be seen by the fourier

transform (Subasi 2005; Kandaswamy et al. 2004).

Wavelet transform can be expressed in terms of a low-pass

filter and a high-pass filter.

Wavelet analysis comprises CWT and DWT. DWT is a

more beneficial procedure than CWT. DWT analyzes the

signal at different frequency bands decomposing the signal

into an approximation and detail data. Each step of the

scheme involves two digital filters with two down-sam-

pling blocks by 2. Outputs of the first high-pass and low-

pass filters generate two decompositions named details

(D1) and approximation (A1), respectively. Additionally,

this process will continue hierarchically and A1 is extra

decomposed and continued.

Applying appropriate mother wavelet and the levels of

decomposition are essential factors in signals analysis. The

level of decomposition is selected based on the dominant

frequency components of the signal. In the present study,

the number of decomposition levels was chosen to be 5,

because the EEG signals were filtered between 1 and 30 Hz

(Simanova et al. 2010; Sanei et al. 2007). Thus, the EEG

signals were decomposed into details D1 to D5 and one

final approximation, A5. These are type of energy coeffi-

cients, which are derived from each electrode. Tests were

performed with different types of wavelets (Symlet2, Haar,

and Daubechies4) (Merry 2005). N is the wavelet order.

Wavelet orders for Haar, Sym2, and Db4 are 1, 2, and 4,

respectively. The length of each filter is equal to 2 N. The

length of Approximation and details is equal to:

Length ðDiÞ ¼
Length ðDi�1Þ þ 2N � 1

2

� �
i¼1;...;5

Length ðAiÞ ¼
Length ðAi�1Þ þ 2N � 1

2

� �
i¼1;...;5

Length ðA0Þ ¼ Length ðD0Þ ¼ 330

8>>>><
>>>>:

ð1Þ

where i is the decomposition level. For instance in Db4, the

length of D1 is equal to
330þð2�4Þ�1

2

j k
¼ 168:5b c ¼ 168.

Sequentially, lengths of D2, D3, D4, D5, and A5 are 87, 47,

27, 17 and 17, respectively. Table 1 shows length of other

wavelet’s decomposition.

Feature Selection

In order to reduce the number of features easily, all

decompositions were normalized and reshaped into a row

vector. Table 1 shows the applied wavelets with the

number of extracted reshaped features. Notice that the

number of features varies based on wavelet type. For

example, in Haar wavelet, which has a basic shape, the

number of features is less than the Daubechies wavelet. In

order to select essential and proper features for classifica-

tion, several scalar feature selection methods were imple-

mented using different criteria including T test, entropy,

and Bhattacharyya distance, which they ranked all features.

T test criterion returns the significance level (p value) of the

test. The p value is the probability, under the null

hypothesis, of observing a value as extreme as or more

extreme than the test statistic. The Bhattacharyya distance

has been used as a class separability measure for feature

selection, and is known to provide the upper and lower

bounds of the Bayes error. However, the bounds are not

tight enough for practical applications (Choi and Lee

2003).

According to early discussed methods, the top 1,000

features were selected according to each criterion. The aim

of this initial selection is to reduce the complexity at the

first step. The absolute value of the criterion was used to

rank features. Absolute value is related to the criterion used

in feature selection, which means how much a feature is

significant to separate two classes. Features with high

absolute value were chosen and others were rejected. The

scalar feature selection method considers feature ranking

between the two classes and due to twelve categories in the

current study, the mentioned method was applied 66 times

considering all states (
12

2

� �
¼ 12!

10!�2! ¼ 66). The matrix

size 66 9 1,000 was obtained. Finally, the features with

most repetitions were selected. The most repeated features

means the most informative features, which have a high

count number among 66 states. In other words, the most

informative features are those which exist in most 66

states. All 66 9 1,000 ranked features were counted, and

features with more existence in most states were chosen as

the best features.

Classification

Support Vector Machines

A support vector machine (SVM) is generally a binary

classifier based on minimization of structural risk. In

complicated nonlinear modeling, the SVM maps the

training data into a higher dimensional feature space in

which a linear hyper-plane can separate the data (Vapnik

1998). In the simplest form (binary linearly separable

case), the SVM training phase tries to find the linear

function to separate the data:
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f ðxÞ ¼ xTxþ b ð2Þ

where x is the weight vector, x is the input data, and b is

considered as bias. The SVM classifier is capable of finding

possible hyper-planes among several numbers of hyper-

planes, which maximizes the margin between two classes

using support vectors at closest point to the hyper-plane.

Minimizing the following cost function leads to the optimal

hyper-plane:

JðxÞ ¼ 1

2
xTx ¼ 1

2
xk k2 ð3Þ

In the non-linear case as considered above, the idea is to

map the input data to some higher dimensional space,

where the data can be classified linearly. The following

mapping can be used:

U : RN �!RM ð4Þ

where N is the dimension of input space, and M is a higher

dimension space, termed feature space. In feature space,

the technique described above can be used to find an

optimal separation hyper-plane.

Multi-class SVM

One of the extended SVM for solving multiclass problems is

the ‘‘one-against-one’’ strategy, which constructs one SVM

for each pair of classes. Thus, for a problem with c classes,

cðc� 1Þ=2 SVMs are trained to distinguish the samples of

one class from the samples of another. The Max Wins algo-

rithm performs voting among the classifiers and the selected

label is the one with the most votes among the classifiers

(Kressel 1999). In case that two classes have identical votes,

though it may not be a good strategy, simply the class

appearing first in the array of storing class names was chosen

(Chih-Wei and Chih-Jen 2002). In addition, in cases with

more classes, the ‘‘one-against-one’’ strategy is more accu-

rate than other methods, and the unbalance of the number of

the samples, especially when it has few training samples per

class does not cause any problem (Milgram et al. 2006).

In the current study, the ‘‘one-against-one’’ multiclass

SVM was used to classify 12 object categories using radial

basis function (RBF) kernel and sequential minimal

optimization (SMO) solver. The proper kernel function

choices can remarkably enhance the system’s performance

and decrease computational cost. Besides the linear kernel,

which is the simplest form of kernel, the prevalently used

kernel is Gaussian kernel, which is defined in (4). In this

kernel, r controls the width of the Gaussian kernel. The RBF

kernel is a reasonable choice. This kernel nonlinearly maps

samples into a higher dimensional space, so unlike the linear

kernels, it can handle the case where the relation between

class labels and attributes is nonlinear (Hsu et al. 2010).

KðxixjÞ ¼ e� xi � xj

�� ��2�
2r2

ð5Þ

In consequence to solve the optimization problem for

training SVM an effective algorithm should be used. The

algorithm used for our experiments is called SMO, which is

an iterative approach. In this approach, a series of smallest

possible sub-problems are created from the problem, and

an analytical solution is provided for these sub-problems

(Bottou et al. 2007).

Significance Test

For a statistically significant test, random sub-sampling or

Monte Carlo cross validation were used. This method

randomly splits the dataset into training and test data

without overlapping. For each such split, the model is fitted

into the training data, and predictive accuracy is assessed

using test data. The results are then averaged over the

splits. Each time, training and testing data were selected

randomly to achieve different performances. The men-

tioned process was repeated 10 times, and the final per-

formance was averaged and reported. Raw data was

randomly divided into two training and testing data, 70 %

for training, and 20 % for test data. Moreover 10 % of the

data was left for validation; this part will be used for setting

SVM parameters (Pereira et al. 2009).

Results and Discussion

Eight volunteers’ EEG signals of twelve image categories

were classified using SVM individually during visual

Table 1 Number of

decomposed features of one

image using DWT with three

different wavelets

19 9 330 samples per image

decomposed into 19 9 333,

19 9 342 and 19 9 363

samples by Haar, Symlet2 and

Daubechies4 wavelets,

respectively

Wavelet Haar Symlet2 Daubechies4

D1 19 9 165 19 9 166 19 9 168

D2 19 9 83 19 9 84 19 9 87

D3 19 9 42 19 9 43 19 9 47

D4 19 9 21 19 9 23 19 9 27

D5 19 9 11 19 9 13 19 9 17

A5 19 9 11 19 9 13 19 9 17

Total features 19 9 333 = 6,327 19 9 342 = 6,498 19 9 363 = 6,897

Brain Topogr (2015) 28:33–46 39
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stimuli task and an overall 70 % classification performance

was obtained. In previous studies, researchers had

attempted to classify categories in different BCI applica-

tions such as identifying objects from their spoken name,

visual representation, and written name in ERP study with

89 % performance (Simanova et al. 2010), left or right

imaginary hand movement with 82–92 % classifier accu-

racy (Higashi et al. 2009; Zhang et al. 2008), and so on.

The most previous related papers are designed and defined

in maximum three or four classes, however our work is

much more complicated consisting of 12 classes, and nat-

urally, it will have less performance accuracy than previous

studies, because the confusion probability is higher.

Moreover, single trial classification has not been well

addressed up to now. In this paper, all tests were carried out

using MATLAB and WinEEG software.

SVM Parameters

The effectiveness of SVM depends on the selection of

kernel, the kernel’s parameters r, and soft margin param-

eter C (regularization constant). A common choice is a

Gaussian kernel (RBF), which has a single parameter

(Kernel Argument). The regularization constant parameter

controls the trade-off between errors of the SVM on

training data and margin maximization. The feature

selection method discussed earlier was implemented only

on training data. As we mentioned before, data were

divided into training, validation, and testing parts. SVM

was designed and trained based on training features, and

was then tested. Regularization constant and kernel argu-

ment parameters of SVM were set up depending on the

training data. However, these parameters were optimized

using validation data. The SVM parameters were setup by

‘‘leave one out cross validation’’ without any interference

of test data by only using training and validation data. This

method was repeated 10 times. The goal is to identify

optimal regularization constant and kernel arguments. A

grid-search on regularization constant and kernel argu-

ments using leave one out cross-validation was carried out.

Various pairs of regularization constant and kernel argu-

ment values were tried, and the one with the best cross-

validation accuracy was picked up. Optimum SVM

parameters were calculated and set separately for each

subject. Figure 3 shows grid-search over SVM parameters

only for subject 1, which [1000, 1] is the best choice with

0.19 validation errors for kernel argument and regulariza-

tion constants, respectively.

Image Presentation

In our experiments, we displayed the name of the target

categories before presenting pictures to inform participants

about images that should be classified by left clicking the

mouse. In comparison with (Johnson and Olshausen 2003),

the task of the study was cued-target and single-category,

and compared with each other using ERP, although our

task is similar to cued-target with some difference in pre-

sentation timing. On the other hand it has other standpoints

of classification with mathematical and machine learning

algorithms. All stimuli were selected colorful pictures,

which are used in real life objects. It has been shown that

colorful pictures lead to faster responses rather than line

drawing pictures (Martinovic et al. 2011). In order to

diminish eye movements, tiredness and consequently eye

related artifacts, 12 categories were divided into 2 six-

groups within a 3 min time gap between (Martinovic et al.

2011).

Feature Selection and Extraction Effects

The effects of feature selection and feature extraction

methods should be evaluated before final evaluation. Three

categories were randomly examined (animal, stationery,

and jewelry). Preprocessed raw signals were classified

without using wavelet transform. Whole results were

obtained with very low performance about 32 %. However,

after applying Sym2 wavelet to the same three categories,

27 % increase in performance was observed and reached

59 % (F(1,7) = 31.6, p value \ 0.005). In the next step,

feature selection method with T test criterion applied and

dimensionality reduced features were classified with

87.3 % performance (F(1,7) = 47.4, p value \ 0.005). In

fact, increasing the number of categories leads to perfor-

mance decrease. Notice that F and p represent statistic and

significance level, respectively by one-way repeated mea-

sure ANOVA test.

Optimal Number of Features

The purpose of feature selection is to reduce feature

dimensionality. Classification performance is directly

related to the number of features and criteria selection.

Figure 4 illustrates average of 10 classification perfor-

mances (tenfold Monte Carlo cross validation) of subject 1.

Results indicate an optimum number of features to T test,

entropy and Bhattacharyya distances with 260, 400 and

600, respectively. Each subject had different optimum

feature numbers with each other. Results demonstrate that

the T test criterion needs fewer numbers of features for the

same performance among other criteria. This is also true in

the case of other seven subjects. Additionally, low number

of features led to fast training. There is a significant dif-

ference between numbers of features; therefore, T test was

chosen for analysis. The selected features were classified

using support vector machine with one against one model,

40 Brain Topogr (2015) 28:33–46

123



RBF kernel, and SMO solver. All data were decomposed

into training, validation, and testing sections; 70 % for

training, 10 % for validation, and 20 % for testing. Results

were repeated 10 times, with random training and test

dataset selection.

Best Combination of Wavelets and Criteria

In order to evaluate criteria and wavelets, a performance

index for each combination was inspected at Table 2. It can

be seen that T test criterion and Haar wavelet present the best

results among others; however, Sym2 with T test is the best

combination. The averaged performances of criteria were

entered in the last column of the table, and the last row of the

table indicates the averaged performances of wavelets.

Additionally, different feature extraction methods and dif-

ferent feature selection criteria were compared to check the

statistical significance in the performances. For the statistical

test, a two-way repeated measure ANOVA was used. The

results indicated that there was the significant effects of the

wavelet type (F(2,14) = 509, p value \ 0.005), the feature

selection type (F(2,14) = 218.5, p value \ 0.005) and the

significant interaction between them (F(4,28) = 32.8,

p value \ 0.01). We performed the paired-samples T test

between each pair of conditions too. It should be noted that

the results have very similar mean values, but the standard

errors of the mean are very small, and there is no overlap

between the results. For the effect of the wavelet types, by

fixing the T test as the feature selection method, which has

the best results for this part, the results of the paired-samples

T test show that there was a significant difference in the

scores for the Sym2 wavelet (M = 70.03 %, SE = ±0.044)

and the Db4 (M = 67.38 %, SE = ±0.046) conditions

(t(7) = 45.43, p value \ 0.01), and also significant differ-

ences in the scores for the Sym2 and the Haar

(M = 69.19 %, SE = ±0.030) conditions (t(7) = 19.53,

p value \ 0.01). These results suggest that the Sym2 wavelet

performs significantly better than the Db4 and the Haar. For

the effect of feature selection types, we applied the statistical

test over the performances of the feature selection methods in

pair by fixing the Sym2 wavelet type, which provides the best

results for the feature extraction part. The results of the

paired-samples T test show that there was a significant dif-

ference in the scores for the T test criterion (M = 70.03 %,

SE = ±0.044) and the entropy (M = 66.78 %, SE =

±0.047) conditions (t(7) = 67.05, p value \ 0.01), and also

significant differences in the scores for the T test and the

Bhattacharyya (M = 64.46 %, SE = ±0.054) conditions

(t(7) = 80.09, p value \ 0.01). These results suggest that

the T test criterion works significantly better than the Entropy

and the Bhattacharyya. Notice that t, M and SE represent

t value, mean and standard error, respectively.

Three one-way repeated measure ANOVAs were imple-

mented to study whether there was a significant effect of

wavelet type on performances for each feature selection type

independently. The results reveal the significant effect of the

Sym2 (F(2,14) = 57.8, p value \ 0.01), the Db4 (F(2,14) =

32.5, p value \ 0.01), and the Haar (F(2,14) = 7.5,

p value \ 0.01) on performance changes depending on the

level of feature selection criterion. On the other hand, three

one-way repeated measure ANOVAs were applied to explore

whether there was a significant effect of feature selection

criterion on performances for each wavelet type indepen-

dently. The results indicate the significant effect of the T test

(F(2,14) = 18.3, p value \ 0.01), the Entropy (F(2,14) =

6.4, p value \ 0.01), and the Bhattacharyya (F(2,14) = 17.2,

Fig. 3 Kernel argument and

regularization constant. A grid-

search on regularization

constant (C) and kernel

argument (r) using leave one

out cross-validation was done

for subject 1. Various pairs of

regularization constant and

kernel argument values are tried

and the one with the best cross-

validation accuracy is picked.

This figure shows (1000,1) is

best choice with 0.19 validation

error for kernel argument and

regularization constant,

respectively. Optimum SVM

parameters were calculated and

set separately for each subject

Brain Topogr (2015) 28:33–46 41

123



p value \ 0.01) on performance changes depending on the

type of wavelet. To elaborate the interaction between feature

selection type and wavelet type, the results of Table 2 exhibit

that the T test criterion has the best performance with all three

types of wavelet. Moreover it can be seen that the T test cri-

terion works better with the Sym-2 than the other wavelets. In

contrary, the Entropy and the Bhattacharyya interact better

with the Haar than other wavelets.

Fig. 4 Performance

comparison for different

number of features consists of

three wavelets and three criteria.

X and Y axis indicate feature

number and performance,

respectively. Results are

average of ten classification

performances (tenfold Monte

Carlo cross validation) of

subject 1. Each subject had

different optimum feature

numbers with each other. a The

number of features for Sym2,

(T test, entropy and

Bhattacharyya distance have the

best results with 220, 380 and

560 features, respectively).

b The number of features for

Db4 wavelet, (T test, Entropy

and Bhattacharyya distance

have the best results with 260,

400 and 600 features,

respectively). c The number of

features for Haar wavelet

(T test, entropy and

Bhattacharyya distance have the

best results with 240, 300 and

500 features, respectively).

Classification is done by support

vector machine with one against

one model, RBF kernel and

SMO solver

Table 2 Criterion average performance (CAP), wavelet average performance (WAP), classification is done by support vector machine with one-

against-one model, RBF kernel and SMO solver

Sym2 Db4 Haar CAP (%)

T test 70.03 % (±0.044) 67.38 % (±0.046) 69.19 % (±0.030) 68.86

Entropy 66.78 % (±0.047) 64.35 % (±0.082) 67.23 % (±0.113) 66.12

Bhattacharyya 64.46 % (±0.054) 59.92 % (±0.100) 65.39 % (±0.102) 63.25

WAP 67.09 % 63.88 % 67.27 %

The values in the parentheses show the standard errors of the means
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Confusion Matrix

Confusion matrix (CM) was computed for the subjects to

assess the twelve categories’ separability. If a classification

system is trained to distinguish between categories, a

confusion matrix will summarize the results of testing the

algorithm for further inspection. Each column of the matrix

represents the instances in a predicted class, while each

row represents the instances in an actual class. The name

stems from the fact that it makes it easy to see if the system

is confusing between classes. A confusion matrix with

Sym2 wavelet and T test criteria was calculated for all 8

subjects, and results were averaged to create the overall

confusion matrix. Classification was performed with SVM

and obtained 70 % average performance for all categories,

which varied from 41 to 97.8 % (for Sym2 wavelet

features).

Table 3 indicates overall averaged values. All values

were obtained by T test besides Haar, Sym2, and Db4. It is

obvious in Table 3 that animals, stationery, and food

classes have maximum classification performances, 95.3,

82.3 and 79.3 % accuracies, respectively with the Haar

wavelet. Moreover, the same classes have best results for

the Sym2 wavelet. On the other hand, dolls, buildings,

fruit, and clothes classes with the rate of 51.7, 54.3, 55.1

and 55.7 %, respectively, have minimum classification

performances with the Haar wavelet. The same classes also

have the worst results with the Sym2 wavelet. To detect

categories confusion with each other that led to minimum

performances, full complete confusion matrix with T test

and Sym2 wavelet was presented in Fig. 5.

The confusion matrix was computed for all categories

indicating mistakes among the classes. This matrix shows

for example, the dolls category is mostly confused with

clothing. There are three hypotheses for this problem. At

first, maybe the feature reduction method is not optimal,

and some useful features of the dolls category might not be

chosen, or some common features between dolls and

clothing might be mixed, and so some effective features

might have been missed. Secondly, some similar colors and

shapes in pictures were coded in brain signals, which might

not be separated easily by the classifier. Thirdly, some

particular groups such as dolls and clothing or fruit and

food were confused together because of some similarities

among them. It means that fruit is also food, as well as

dolls wear clothes. Besides the three discussed hypothesis,

results of same categories order for all participants, to some

extent, could be dependent on task order.

Informative Features

Extracted features based on training data were counted to

introduce informative features. As a result, T5, T4, O2, O1,

and C4 were announced as informative channels (O1:23 %,

O2:21 %, T4:13 %, T5:11 % C4:10 %). This does not

mean that other features had no role in the classification;

however, the mentioned features had high role in the cat-

egorization task. In addition, D1, D2 and D3 with more

than 27, 25 and 21 % repetition were designated as infor-

mative DWT scales, respectively. D1, D2 and D3 are the

high frequency scales of 1–30 Hz range. For some further

clarification, Fig. 6 illustrates EEG wavelet spectrograms

of two examples of well-classified categories (animals and

stationery). It can be clearly seen from the figures that the

most active areas are high frequencies. In the animal cat-

egory, alpha band frequency shows high energy amplitude

In contrast, the stationery category has lower alpha activity

and high energy amplitude in beta band frequency.

Study Limitations and Future Work

The performance of SVMs largely depends on the choice

of kernels, but the choice of kernel functions, which are

well suited to the specific problem, is very difficult. Speed

and size are other problems of SVMs both in training and

testing. In terms of running time, SVMs are slower than

other neural networks for a similar generalization perfor-

mance. For further studies, other classification methods

including artificial neural networks can be examined. To

determine the most-involved electrodes and frequency

bands of brain signals, a combination of ERP and classi-

fication could be used to obtain higher and faster classifi-

cation performances.

Another limitation is participants, which in such visual

experiments are asked to sit still, suppressing or minimiz-

ing natural eye and head movements, waiting for and

Table 3 Overall performance for all categories by T test criterion

with Haar wavelet (first column), Sym2 wavelet (second column) and

Db4 wavelet (third column), Classification is done by support vector

machine with one against one model, RBF kernel and SMO solver

Categories Haar (%) Sym-2 (%) Db4 (%)

Animal 95.3 97.8 93.3

Flower 74.4 77.9 74

Fruit 55.1 48.7 47

Transportation 70 65 64.9

Body organ 69.8 79 75

Clothes 55.7 57.6 55

Food 79.3 79.3 78

Stationery 82.3 84.6 77.9

Building 54.3 58.8 52.1

Electronic device 66.1 75.4 69

Doll 51.7 41 47.7

Jewel 76.3 75.2 75.1
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gazing at stimuli because of perceived difficulty of sepa-

rating brain EEG data from non-brain artifacts. Neurosci-

ence studies often assume that brain activity measured in

well-controlled conditions and environments reflects a

general principle of brain dynamics during cognitive pro-

cessing in naturalistic environments. However, until

recently, only scattered studies explicitly investigated

whether the brain switches to a different method of oper-

ation while humans actively behave, adapt to, and interact

with ever-changing environments. A BCI communication

system with wireless electrodes or improved artifact

removing method can be designed for premier applications

such as decoding brain signal system for speechless people.

Extra future work can be introduced by optimizing our

results. Different feature extraction and feature reduction

methods could be applied to raw data, and new features

could be checked. However, from the study point of view,

distinctive features are the most important issue. In addi-

tion, receiver operator characteristic may be a useful

method for presenting final results.

Fig. 5 Confusion matrix.

Shows classification accuracies

obtained when classifying 12

categories (2D confusion matrix

for T test and sym2 wavelet) by

support vector machine with

one against one model, RBF

kernel and SMO solver. Fruit

category is confused mostly

with food and animal classes

with 15 and 12.2 %,

respectively. Transportation

category is confused mostly

with clothing (5.1 %). Clothing

category is confused mostly

with body organs and flower

classes with 13.4 and 17.1 %,

respectively. Building category

is confused mostly with

transportation (12.3 %). Doll

category is confused mostly

with clothing (18.3 %)

Fig. 6 EEG wavelet spectrogram. Two examples of spectrogram

obtained over a representative cortical channel (O1), for one subject

and two well-classified categories (animal and stationery). The

dashed horizontal lines show the borders between the brain frequency

bands a illustrates EEG alpha activity (813 Hz). In comparison

b shows EEG beta activity (13–30 Hz) during 140–540 ms
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Conclusions

The EEG signals of eight participants, during the perfor-

mance of visual task selecting target images through 12

categories. This study focused on preprocessing and pro-

cessing units. Statistical ICA and filtering methods were

implemented to remove eye-movement and eye blinks.

Data were separated into training, validation, and test sets.

SVM parameters were setup by ‘‘leave one out cross val-

idation’’ with no interference of test data. Features were

extracted using three wavelets (Sym2, Db4, and Haar), and

the Haar wavelet yielded the best result with 67.27 %

averaged performance. Moreover, features were ranked and

reduced by three criteria of scalar feature selection methods

namely T test, Entropy, and Bhattacharyya distance. T test

had better outcome among other criteria with 68.86 %

averaged performance. Animals, stationery, and food

classes have maximum performances of 97.8, 84.6 and

79.3 %, respectively (with Sym2-T test combination).

Finally T5, T4, O2, O1, and C4 electrodes with D1, D2,

and D3 scales were introduced as informative features

based on training data.
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